2
Conditional probability models

In this chapter we introduce the idea of conditional probability, which allows
us to extend the binary model so that the probability of failure can depend
on earlier events. The natural way of thinking about conditional proba-
bilities is in terms of a tree diagram. These diagrams are used extensively
throughout the book.

2.1 Conditional probability

Suppose a bifiary probability model ‘assigns a probability to a subject’s
death during some future time period. It may be that this prediction would
be better if we knew the subject’s smoking habits. This would be the case
if the probability of death for a smoker were 0.015 but only 0.005 for a
" non-smoker. These probabilities are called conditional probabilities; they
are the probabilities of death conditional on being a smoker and a non-
smoker respectively. Epidemiology is mainly concerned with conditional
probability models that relate occurrence of some disease event, which we
call failure, to events which precede it. These include potential causes,
which we call exposures.

When subjects are classified as either exposed (E+) or not exposed
(E-), the conditional probability model can be represented as a tree with
6 branches. The first two branches refer to E+ and E—; then there are two
referring to failure and survival if the subject is exposed, and two referring
to failure and survival if the subject is not exposed. An example is shown in
Fig. 2.1. The tips of the tree correspond to the four possible combinations
of exposure and outcome for any subject.

The probabilities on the first two branches of the tree refer to the prob-
ability that a subject is exposed and the probability that a subject is not
exposed. Using the smoking example we have taken these to be 0.4 and
0.6. The probabilities in the next two pairs of branches are conditional
probabilities. These are 0.015 (F) and 0.985 (S) if a subject is exposed
(smokes), and 0.005 (F') and 0.995 (S) if a subject is not exposed (does not
smoke).

The probability of any combmatlon of exposure and outcome is ob-
tained by multiplying the probabilities along the branches leading to the
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Fig. 2.1. A conditional probability tree.

tip which corresponds to that combination. For example, the probability
that a subject is exposed and fails is

0.4 x 0.015 = 0.006,
and the probability that a subject is not exposed and fails is
0.6 x 0.005 = 0.003.

This is called the multiplicative rule.

Exercise 2.1. Calculate the probabilities for each of the remaining 2 possibilities.
What is the overall probability of failure regardless of exposure?

This overall probability is usually called the marginal probability of failure.

STATISTICAL DEPENDENCE AND INDEPENDENCE

Fig. 2.1 illustrates a model in which the probability of failure differs accord-
ing to whether an individual was exposed or not. In this case, exposure and
failure are said to be statistically dependent. If the probability of failure is
the same, whether or not the subject is exposed, then exposure and failure
are said to be statistically independent.
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Fig. 2.2. Predicting exposure from the outcome.

2.2 Changing the conditioning: Bayes’ rule

The additive and multiplicative rules are the basic building blocks of prob-
ability models. A simple application of these rules allows us to change the
direction of prediction so that, for example, a model for the probability of
failure given exposure can be transformed into a model for the probability
of exposure given failure. : '

We shall demonstrate this by using the tree in Fig. 2.1, where the first
level of branching refers to exposure and the second to outcome. This is
turned round in Fig. 2.2, so that the first level of branching now refers
to outcome and the second to exposure. The probabilities of the different
combinations of exposure and outcome are the same whichever way the
tree is written; our problem is to fill in the probabilities on the branches of
this new tree.

Working backwards from the tips of the tree, the probability of failure
regardless of exposure is 0.006 + 0.003 = 0.009. This is the probability
for the first branch of the tree to F. Since the probability corresponding
to any tip of the tree is obtained by multiplying the probabilities in the
branches that lead to the tip, it follows that the probability in the branch
from F to E+, for example, is 0.006/0.009 = 0:667. This is‘the conditional
probability of being exposed given the outcome was failure. This process of
reversing the order of the conditioning is called Bayes’ rule, after Thomas
Bayes.
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Exercise 2.2. Calculate the remaining conditional probabilities.

The following exercise, inspired by problems in screening, demonstrates
one of the many uses of Bayes’ rule.

Exercise 2.3. A screening test has a probability of 0.90 of being positive in true
cases of a disease (the sensitivity) and a probability of 0.995 of being negative in
people without the disease (the specificity). The prevalence of the disease is 0.001
so before carrying out the test, the probability that a person has the disease is
0.001. -

(a) Draw a probability tree in which the first level of branching refers to having
the disease or not, and the second level to being positive or negative on the
screening test. Fill in the probabilities for each of the branches and calculate the
probabilities for the four possible combinations of disease and test.

(b) Draw the tree the other way, so that the first level of branching refers to
being positive or negative on the screening test and the second level to having
the disease or not. Fill in the probabilities for the branches of this tree. What
is the probability of a person having the disease given that they have a positive
test result? (This is called the positive predictive value.)

2.3 An example from genetics

Our next exercises illustrate a problem in genetic epidemiology. For a
specified genetic system (such as the HLA system), each person’s genotype
consists of two haplotypes,* one inherited from the mother and one from
the father. If a mother has haplotypes (a,b), then one of these is passed to
the offspring with probability 0.5. Likewise for a father’s haplotypes, (c,d)
say. Fig. 2.3 shows the probability tree for the genotype of the offspring.
The presence of haplotype (a) carries a probability of disease of 0.05 while,
in its absence, the probability is only 0.01.

Exercise 2.4. Work out the probabilities for the four tips of the probability
tree which end in disease (F). Hence work out the probabilities of the four pos-
sible genotypes conditional on the fact that the offspring is affected by disease
(Fig. 2.4). '

Exercise 2.5. In practice the probabilities of disease conditional upon genotype
are not known constants but unknown parameters. Repeat the previous exercise
algebraically, replacing the probabilities 0.01 and 0.05 by = and 67 respectively.
How are the conditional probabilities changed if the subject’s father has genotype
(c,0)? -

The parameter 8, described in Exercise 2.5, is a risk ratio,

_ Risk of disease if haplotype (a) present
" Risk of disease if haplotype (a) absent

*The word haplotype refers to a group of genetic loci which are closely linked and
therefore inherited together.
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From mother From father Offspring
Disease, F
0.5 c (asc) <
a
0.5 Disease, F
0.5 4 (a,d) <
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05 c (b,c) <
0.5
b
Dlsease,
N4 kg <

Fig. 2.3. Disease conditional upon inheritance.

(a,c)
(a,d)

(byc)

(b,d)

Fig. 2.4. Inheritance conditional upon disease.

It measures the strength of statistical dependence (or association) between
the presence of haplotype (a) and occurrence of disease. The above exercise
shows that the conditional probability of genotype given the presence of
disease and parental genotypes depends only on this risk ratio.
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Solutions to the exercises
2.1
Pr(E4+ and S) = 0.4 x 0.985 = 0.394
Pr(E— and S) = 0.6 x 0.995 = 0.597

The overall probability of failure is 0.006 + 0.003 = 0.009.

2.2 See Fig.-2.5. The conditional probabilities of E+ and E— given

survival are 0.394 0.597
0.991 03976, 0.991 0.6024
2.3 (a) See Fig. 2.6. -
(b) See Fig. 2.7. The probability of disease given a positive test result is

0.0009
0.005895

Note that this is much lower than 0.90, the sensitivity of the test. The
remaining conditional probabilities are calculated in a similar manner.

= 0.1527.

2.4 - The probabilities for each of the four tips are obtained by multiply-
ing along the branches of the tree. The sum of the four probabilities is
0.0300. The conditional probabilities sum to 1.0.

Genotype Disease Probability Conditional prob.
(a,c) F 0.5x 0.5 x 0.05=0.0125 0.0125/0.03 = 0.417
(a,d) F 0.5 x 0.5 x 0.05 = 0.0125 0.417
(b,c) F 0.5 x 0.5 x 0.01 =0.0025 0.0025/0.03 = 0.083
(b,d) F 0.5 x 0.5 x 0:01 = 0.0025 0.083
Total 0.0300 1.0

2.5 Repeating the above calculations algebraically yields:

Genotype Disease Probability Conditional Prob.
(a,c) F 0.5 x 0.5 x 67 = 0.2567 0/(26 + 2)
(a,d) F 0.5 x 0.5 x 6 = 0.2507 6/(20 + 2)
(b,c) F 0.5x0.5 x 7 =0.257 1/(26 +2)
(b,d) F 0.5x0.5x7=0.257 1/(20 + 2)

Total . 0.257 (26 + 2) 1.0
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If the father has genotype (c,c) then he can only pass on (c) and the possible |
genotypes of offspring are (a,c) and (b,c). Prior to observation of disease
presence, these both have probabilities 0.5. Thus, for a subject known to
have disease, we have

Genotype Disease Probability

Conditional Prob.

(a,c) F 0.5 x 67 = 0.567 0/(6+1)
(b,c) F 0.5 x m = 0.57 1/(60+1)
Total 0.5m(6 + 1) 1.0
Probability
0.667 — E+ 0.006
F
0.009
0333\ g 0.003
0.3976_— E+ 0.394
0.991
S
0.6024 ™ g 0.597

Fig. 2.5. Probability tree for exposure given outcome.

D+

Test results, T, given disease status, D.

SOLUTIONS
Probability
09— T+ 0.0009
SN 0.0001
0.005_— T+ 0.004995
0.995 ™~ 7_ 0.994005

Probability
0.1527 D+ 0.0009
08473~ p_ 0.004995
D+ 0.0001
D— 0.994005

Fig. 2.7. Disease status given test results.
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